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ABSTRACT 

Inflation based on a single chiral superfield (the inflaton) in N-l 

supergravity has been shown to be incompatible with the so-called 

thermal constraint requiring a high temperature minimum at a point at 

which the zero temperature scalar potential is flat, in a theory using 

fields with minimal scalar kinetic terms. Here we show that by 

modifying the kinetic terms of the inflaton, one can satisfy the thermal 

constraint without introducing additional fields or small parameters. 
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I. INTRODUCTION 

Inflationary cosmologies Cl1 have been shown to be capable of 

resolving a number of cosmological problems such as the horizon problem 

and the flatness/oldness problem. Inherent in these models is that the 

universe enters a de Sitter-like phase cl,21 during which the scale 

factor of the universe (R) increases exponentially. The de Sitter phase 

can be realized in models where the universe undergoes a first order 

phase transition during which it supercools many orders of magnitude. 

One of the basic assumptions in the standard hot big bang cosmology, 

that the universe expands adiabatically, can be strongly violated by 

such a transition, since following the extreme supercooling the latent 

heat of the transition is released. This entropy production can 

potentially lead to a solution of the cosmological horizon, 

flatness/oldness problem3 associated with the standard model 111. 

The new inflationary universe c31 was the first serious candidate 

for a realistic inflationary cosmology scenario. Here the inflation 

(exponential expansion) is triggered by the spontaneous breakdown of a 

w-m symmetry in a grand unified theory (GUT), and it was shown that 

GUT models with the Higgs potential of the Coleman-Weinberg type can 

produce the amount of inflation required to solve the cosmological 

problems when mass scale3 are correctly tuned. The new inflationary 

universe however fails on an important point: the amplitude of the 

spectrum of energy density fluctuations &p/p come3 out much too large to 

be consistent with galaxy formation C41. Other problems have also been 

shown to plague this scenario C5,61. This disappointment ha3 led many 

to the study of inflation in the framework of supersymmetry [6-83. In 



supersymmetric theories, radiative correction to the Higgs potential are 

small and a natural explanation of the hierarchy problem along with 

small stable masses needed for inflation may be possible. In this paper 

we shall be concerned about a special class of supersymmetric 

inflationary theories; those in which the scale of the "symmetry 

breaking" is of the order of M-Mp/&=2.4x10 18 CeV, where M is the 
P 

Planck scale (this is called primordial inflation) [71. In the models 

we consider, inflation is not associated with the breakdown of any 

symmetry a3 in the new inflationary universe. However, much in analogy 

with the latter, inflation is generated in a first order phase 

transition during which a scalar field (the inflaton) acquire3 a non 

zero vacuum expectation value <.$>=v-M. The scalar potential V is fine 

tuned so that the cosmological constant vanishes at v, i.e. V(v)=O. It 

has been argued that primordial inflation (i.e. inflation above the GUT 

scale) may be more natural than inflation at lower scale3 such a3 at the 

GUT scale, because it involves less fine tuning of parameters. The 

reason being that flat potentials, a3 are needed in the inflationary 

picture, are easier to obtain as v+M. 

The combination of primordial inflation and supersymmetry naturally 

leads one to consider inflation in supergravity. Several authors have 

already studied inflation in N=l minimal supergravity models, but it 

appears difficult if not impossible to satisfy all the constraints an 

inflationary model must satisfy C91. By minimal supergravity models we 

mean models in which Gi=6: (here G is the K'ahler potential), so that the 

kinetic terms of the scalars, G~a~eiaue;/2 are the usual ones. It is 

our hope that by considering more general Kahler potentials, with Gj an 



arbitrary positive definite tensor (non minimal supergravity), the 

inflationary constraints can be satisfied. In sections to follow, we 

shall argue that this is actually possible, and we shall provide an 

example of an inflationary cosmology which satisfies the constraints 

without any fine tuning (except for the cosmological constant). We 

shall also provide an example in the large N limit !N being the number 

of scalar fields in addition to the inflaton), in which all constraints 

are satisfied. 

In Section II we review some result3 from minimal super-gravity 

models, and consider in detail the constraint imposed through finite 

temperature corrections to the scalar potential. In Section III we 

define non-minimal supergravity in more detail and present our results. 

Our conclusions are given in Section IV. 

II. MINIMAL SUPERGRAVITY 

NOTATION: We begin this section by introducing the notation used 

throughout this paper. We shall consider scalar fields ei, i=O, 1 )....) 

N, and potentials u(e',o;). Here e" is the inflaton, and we simply write 

4 for e". lm.. For derivatives we use the following abbreviations, u. 
lj.. = 

(a/a~‘)(a/a~j)..(a/a~~) ca/a$~h, and SC4IEtime3 3130 U+ = Uo, U’ = U” 

etc. when we are concerned about derivatives with respect to e and e*. 

Given the Lagrangian for N-l supergravity coupled to matter [lo], 

one can write down the most general form for the scalar potential in 

terms of the Kahler potential G, 

v = exp (G)CG.(G-‘)!G~ 1 .I 
- 31 (2.1) 
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where G is a real function of the chiral superfields e’. Our unit3 

through this paper will be M = Mp/,& = 1. The scalar kinetic terms of 

the theory are given in terms of G as well 

yK., = -d(a 
1 !J 

ai)(au+Y)/2 
3 (2.2) 

Hence, we will use the term minimal N=l supergravity to describe those 

theories which have a priori normalized kinetic term3 or 

(2.3) 

It is common in minimal theories, to express the Ktiler potential 

in terms of another arbitrary function called the superpotential F(ei), 

G = O’$J; + loglF12 (2.3) 

In this case the scalar potential takes its more familiar form 

V = exP(e’e;)CIF, + e;Fl2 - 3jFj21 (2.4) 

The first attempt Cl11 to write down a model for inflation in the 

context of supergravi ty, considered a single chit-al superfield e to be 

known as the inflaton. Starting with an arbitrary polynomial for F(e) 

m 
F(e) = p2 z A,$? 

n-0 
(2.5) 
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one hoped to use the constraint3 on the scalar potential for inflation 

to set condi ti on3 on the couplings hi. The two major constraints (a 

complete list of constraints will be given in Section III) require a 

long rollover timescale, that is the timescale for the inflaton to pick 

up it3 vacuum expectation value v = 1 and an acceptable magnitude for 

the density perturbation 6p/p produced during the rollover. This last 

constraint will fix the magnitude of the mass scale u in the 

superpotential (2.51, 

One notices that the higher order terms in F apparently introduce 

non-renormalizable interactions, but because we will view this as an 

effective theory, the3e terms are suppressed below the Planck scale by 

powers of M, and above the Plsnck scale new physics is hoped to cure 

this problem. The superpotential F is in general a sum of several 

piece3, 

F = FI + FG + FS (2.6) 

due to the inflaton, the GUT sector and the SUSY breaking sector. Since 

we are concerned about primordial inflation, we assume that at large 

energy scales the inflaton piece dominates. It is only at lower energy 

scales, after inflation, that the GUT piece and then the SUSY piece 

contribute3 to F. In what follows we will concentrate only on the 

effects due to F I’ 

A simple example of an inflationary model in minimal supergravi ty 

at zero temperature which satisfies all constraints is Cl23 



F($) = u*(l-I$)* (2.7) 

(i.e., ;io=l, A, =-2, and AZ=1 1. This choice of F insures that the first 

and second derivatives of V vanish at $=O as is required for sufficient 

inflation, that V(O) is positive and that V has a minimum with vanishing 

cosmological constant at o=l . With a suitable choice of u it is also 

possible to satisfy the constraint imposed by the energy density 

fluctuations, that 6p/p = lo-‘. Thus the zero temperature potential V 

derived from this F satisfies all requirements for a successful 

inflationary cosmology. 

We note here that the minimum of the potential at $=l preserves 

supersymmetry. The condition for supersymmetry breaking being 

eG'*Gi(G-'); # 0 (2.8) 

for some field j. If for example, the global minimum for the inflaton 

did break supersymmetry, the supersymmetry breaking scale MS would be 

determined by the single scale in F namely 

MS - P2 . (2.9) 

As we will see, u is determined by 6p/p to be P - 10C4 so that 

MS - IO -8 _ , o’ 0 GeV. This scale is much too large for supersymmetry to 

be useful as a solution to the gauge hierarchy problem. Adjusting N - 

1 o-8 to give correct supersymmetry breaking then leads to an 

unacceptable inflationary model 1131. Thus in order to avoid extreme 



a 

fine tuning and the introduction of several scales in the 

superpotential, we will OdY consider models in which the inflaton 

preserves supersymmetry at the global minimum and models in which FI is 

a function of a single field and carries only a single scale u and all 

couplings hi are O(1). 

The model given by eq. (2.7) is indeed quite simple. However a 

problem arises when one considers the initial conditions for the 

inflaton Q. Without specifying the initial conditions by hand, the only 

way to determine them is by examining corrections to V(e) at high 

temperatures 1141. However if one calculates the finite temperature 

potential VT using the same superpotential (2.7) one finds that V and VT 

do not have extrema at the same values of o, in particular at $=O. This 

means that the value of e as the temperature cools below the critical 

temperature may be different from zero, and only if V has vanishing 

first and second derivatives at this value of e, may one hope to get 

inflation. We therefore conclude that in order to have a consistent 

scenario, we must impose the thermal constraint i.e.. the constraint 

that VT has a minimum at e=O (or to be more precise, at the value of Q 

at which the first and second derivatives of V vanish, i.e. where V(e) 

is flat). 

It has been argued cl51 that in the case we are considering, single 

field inflation in minimal supergravity, it is not possible to satisfy 

the inflationary and thermal constraints simultaneously. Indeed, one 

can show that the requirements V(0) > 0, aV/&$ (0) = 0 and aVT/ao (0) E 

0 are incompatible. The expression for VT has been calculated, 



VT f Flr2NBT4/48 + Tr(mi+mF/2)Tz/24 (2.10) 

where N h is the number of boson degrees of freedom and rni (mi$) is the 

boson !fermion) mass-squared matrix. These matrices depend on the 

Kahler potential G and its derivatives, which again depend on the vacuum 

expectation values of the scalar fields. In terms of the Kahler 

potential we have the following expressions for the traces involved in 

the calculation of VT i16] 

Tr(m’) = 2(G-‘)iV? B .I 1 

(2.11) 

Tr(m$ = 2e’Cl(G-‘): (ckj + CkCj - C,C~j(G-‘);)~*-21 

where we have included the spinrl/2 and the spin-312 (gravitino) 

contributions in the fermion trace. At high temperatures the dominating 

field-dependent term in the effective potential, V+VT, is VT, and its 

minimum determines the vacuum expectation values of the ei’s at high 

temperatures. 

In the case we are considering (G:=6:) eq. (2.10) can be 

simplified, 

vT = ~~,~[3/2 (A+~+c*) + (N-1 )c - (2N+i )I/12 (2.12) 

where 

A = G.G%. + h c 1 J 
. . (2.13a) 
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B = CijGij (2.13b) 

c = GiCi (2.13c) 

and N is the total number of chiral supermultiplets. In the limit that 

N is large, eq. (2.12) further simplifies to Cl61 

v 
T 

= NT2eG(C-2)/12 (2.14) 

We remind the reader that in this notation we have 

v = eG(C-3) (2.15) 

for the case under consideration. 

If we now try to apply the condition aV/a$ (0) = aVT/@ (0) = 0, we 

have 

G$(C-2) = C @'(C-3) 
e 

(2.16) 

which can be satisfied only if G 
# 

= 0 or eG = 0. However these solutions 

correspond to V(O)<0 and V(O)=0 respectively and both violate the 

necessary condition that V(O)>O. Hence the incompatibility between the 

inflationary constraints and the thermal constraint. 

The observant reader may object to the fact that we have required a 

thermal minimum at $=O rather than e-0 which would be sufficient for our 

purposes. This case however turns out to invoke unnatural means such as 
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fine tuning coupling constants of the scalar field interactions by many 

orders of magnitude. Indeed even efforts to satisfy all constraints by 

including extra fields interacting with the inflaton 1171 have led to 

severe fine tuning in the superpotential. The only way we hope to 

remedy this situation is to examine non-minimal models. 

III. NON-MINIMAL SUPERGRAVITY 

In this paper we shall try to examine the possibility of satisfying 

the thermal constraint by considering non-minimal supergravity. 

Non-minimal supergravity has been considered before in other contexts by 

several authors C181. As we have said earlier, what we mean by 

non-minimal supergravi ty is the class of theories in which G!$si. 1 

Because the kinetic terms of the scalar fields (given by eq. (2.2)) are 

no longer correctly normalized, a transformation of the fields 4’ to new 

(physical) fields are required. This brings the kinetic terms back to 

normal form in terms of the new fields. 

We will assume that only one chiral superfield whose scalar 

component $ is called the inflaton, is responsible for inflation and 

that the effect of all other fields are negligible at the energy scale 

at which the inflation occurs. (To be more precise, the inflaton is the 

real part, eg, of the complex field $=eg+ieI.) We first consider the 

case where the inflaton iS the only field present (note that we do not 

at any time impose a priori that $=Q,, instead we will impose conditions 

for the stability of <$I>=~). Later we consider the so called large N 

limit. 
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The equation of motion satisfied by the inflaton $ may be derived 

from the Lagrangian 

L = Id43~(c~ailmiau~;g~“/2 - V(C~,@*)) (3.1) 

We find that $ - assumed to be homogeneous - satisfies the scalar field 

equation 

C;(;+3H$ + G&G2 = -V@ , (3.2) 

where we have also assumed that the space-time metric g TV has the usual 

Robertson-Walker form, and H is the Hubble constant. When we examine 

this equation for the purpose of inflation it is Important to notice 

that in theories with non-minimal kinetic terms the effective “force” 

which drives C$ to the minimum of V is -V@/G@ instead of the 
e 

usual $ -II . 

Notice also that an extra “friction-term” appears in the equation of 

motion. 

We shall attempt to devise a C($,$*) so as to obtain an effective 

potential satisfying all constraints including the thermal one. We will 

choose G in such a manner that Gz equals 1 to at least second order at 

$=O, so that we can replace G 
z 

with 1 when we impose the constraints at 

$=O required to obtain successful inflation. The zero temperature 

potential V should have a shape like shown in figure 1, where V is 

positive and monotoneously decreasing on the real $-axis between c$~=O 

and $,-V. V must be chosen to be very flat at $=O in order to provide 

for sufficient inflation, so we demand that 
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v>o (3.3) 

(3.4) 
av -=o 

a@R 

a2v -co 

a$; 
!3.5) 

at eR = $I = 0. The imaginary part, @I of @ will be irrelevant for 

inflation, so in order to simplify matters, we require that $ I is stable 

during inflation, i.e. that 

av 0 -= 

a$I 

+(,Gy;)> 0 
I I 

(3.6) 

(3.7) 

for all $=$* (notice that this is equivalent to @I = 0 and eR 

arbitrary). 

Furthermore we must choose G so that the cosmological constant 

vanishes at the minimum, i.e. we require that 

w, = v, a1 = 0) = 0 (3.8) 

In addition as we have said in the previous section, we wish to impose, 

that C$ has nothing to do with the breaking of supersymmetry. Therefore 

we demand that the minimum of V at v be supersymmetry conserving; this 

amounts to the requirement eq. (2.8) that 



PC@ = 0 
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!3.9) 

at $=@I*=“. 
In order to satisfy the thermal constraint we must require that VT 

has a stable minimum at the point where V is flat (in this case at $=O), 

i.e., that the first derivatives Of VT vanish and that the mass matrix 

MT (calculated from VT) is positive definite at this point, 

avT av 
-z-=0 
abR a+, 

In; = a*v > 0 

a$,a$j 

(3.10) 

(3.11) 

for i,j = R or I at @ = 0. Thus eqs. (3.3) - (3.11) represent the 

constraints we will require on G($,$*) which can provide a scalar 

potential capable of inflation. Other constraints such as density 

perturbations and reheating will be discussed below. 

In order to satisfy these constraints we write G in the following 

form 

G($,@*) = g(+$*) + lo~lF($)l* , (3.12) 

where 

F($) = v2C1-(~)n1m 
V (3.13) 
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and where g is a real function, g($,$*) = Zakl+k$*l with akl = alk. We 

have here restricted ourselves to the case where the akItS are real; 

this insures that V too is a power series in @ and $* with real 

coefficients, and therefore that aV/a$, vanishes when $=,$I (see 

eq. (3.5)). This particular form of F is chosen in order to trivially 

Satisfy the constraints at the minimum 4 = v; this choice insures that 

the supersymmetry constraint (eq. 3.8) is satisfied, and since V 

contains a prefactor of exp(C), it is apparent that V vanishes at $ = v. 

We now make the following choice of g: 

i3(@AX) = 
a(@+$*)+$$*+(2-a2)($*+$**)/2+ (ab-5a-a2c/3+2a3)($3+$*3)/6 (3.14) 

+(l-ac/3)($$*)2/4+b(+3$*+$,@,*3)/6+ c(~3~*2+$2@*3)/~2 . 

We have for simplicity chosen a12 = 0 (i.e. the coefficient of 

@a* ($+4*) 1. With this choice of g all the remaining constraints except 

for the ones involving inequalities are satisfied. Therefore what 

remi ns to be done is to choose - if possible - a, b, c, m. n and v so 

the inequalities are satisfied. 

We have attempted this with the aid of a computer and found that it 

is in fact possible to satisfy all constraints for example by choosing 

!=,b,c,m,n,v) = C-2,4,-3.2,5,1) . (3.15) 

The T=O scalar potential for these parameters is of the same form as in 

Fig. 1. 
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We have not yet included the constraint coming from energy density 

perturbation on the potential. For a potential of the form 

V($) = u4!A F h2$3/3 + . ..) (3.16) 

!as is the case for $4 for G defined by (3.12-3.14), the expression for 

the energy density perturbations is [4,191 

6P 1 -is 
P (~T~A)"~ 

u2X2 ln*(Hk-‘1 !3.17) 

where k is the wave number of the perturbation, and H = (A//3)“* with A 

and A2 of order unity. and galactic size perturbations eq. (3.18) 

becomes 

(3.18) 

implying that u - 10T7 - 1Oi8 so that 6p/p - 10T4 - 10m5 in agreement 

with limits from the anisotropy of the microwave background radiation. 

Finally, as we have remarked above, we must transform the fields 

into physical fields. In the appendix we have shown how this is done 

for a G of the form we have chosen above, and we argue that the 

constraints are still satisfied for the new (physical) fields. 

We shall now consider the effects of additional fields and the 

large N limit. In a realistic model, the GUT sector provides for on the 
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order of 100 extra fields, which contributes to the KShler potential, so 

that in general V and VT are changed. We assume for simplicity that Gj: 

is diagonal and that Gi = 6: for i,j=l,2 ,..., N. We also let $=$’ be the 

inflaton. Then we find for the new potentials 

V = exp(G)CIG+12/G~i3] (3.19) 

and 

VT = V; + NT2(V+exp(G))/12 ; (3.20) 

where we have only included the part which depends on the inflaton 

(@s$*), VT” is the previously used expression for the thermal potential, 

and we notice that V is unchanged as a function of C, but that due to 

the extra fields, V T contains additional terms of which we only have 

included the leading term in N. In order to satisfy the constraints we 

make the following ansatz for the $-dependent part of G, G = 

g(+,$*)+loglF!+)12, and 

a(0+$*)+$$*+(2-a*) ($*+$*‘)/2 + (ab-5aca2c/3+2a3) (Q3+$*3)/6 (3.21) 

+(l-ac/3)($@*)2/4+b($3$*+$@*3)/6 + (c+N/a)(,$3$*2+$2@*3)/12. 

This choice sat1 sf i es all constraints except the ones involving 

inequalities. These must be satisfied by a suitable choice of the 

remaining parameters a, b, c, m, n and v. N is typically of the order 



100; for illustrative purposes we have chosen N=lOO. Again, with the 

aid of a computer, we have found it possible to satisfy all constraints 

by a suitable choice of parameters. For example the following set is 

sufficient (a,b.c,m,n,v) = C-3,15,-2,2,5,1/2). Analogously to the case 

with only one field, a field transformation is needed. This 

transformation only involves $ and $* since only G 
z 

is non-trivial and 

G; = 6;; see the appendix. 

For completeness, we observe that reheating in these models does 

not present any additional problems. The inflaton is coupled to 

ordinary matter only through gravity and it decays with a decay rate r = 

M3/M2 
4 * 

In the examples above, M 
e 

is always of the order u2M so that the 

reheat temperature is [20,9,121 

TR - (r~)“~ - u3M - 1 O6 GeV (3.22) 

Although this may seem like a low reheating temperature, if the mass of 

this Higgs boson responsible for generating the baryon asymmetry is MH > 

10" GeV, the net baryon number produced is 

“B _ TR - -- 
3 MH (AB) - yO’-4(AB) (3.23) 

where AB is the baryon number produced by H, H* decay. (See however 

Ref. 21.) 

We conclude this section by discussing how to extend the above to 

include other sectors such as the GUT sector or the SUSY breaking 
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sector, and thereby include low energy physics. This may be done, as we 

have mentioned above, by including in F contributions from the extra 

sectors, for example let us consider F = f+h where f is the piece 

responsible for inflation defined above, f = ~*C1-(~#/v)"]" and h = h(yi) 

is the superpotential of the GUT sector. Using G = 

g(~,~*)+*i~t+lo,)F/2, we find for the scalar potential V: 

V = exP(g+$‘$y) Clfe+g$F( *$+(hi+tii ) *F ‘-3jF]*l . (3.24) 

Since h<<p2, F-f at large energy scales and we recover the expression 

for V used in our previous analyses. After the inflationary phase 

transition however, when $ = v, f and f 
$ 

vanishes and V is expressed 

entirely in terms of the GUT sector: 

V = exP(~‘~~)[lhi+~~h~*-3~h12] . (3.25) 

In this way one can also wish to add a Polonyi term 1223 to break the 

supersymmetry, F3= * mo(B+z) where m 
0 

_ 1o-8 is the scale of supersymmetry 

breaking and z is the Polonyi field responsible for the breaking. 

IV. CONCLUSIONS 

The necessity of separating the inflation sector from the GUT 

sector is unattractive in the sense that it requires new physics to 

describe an inflationary phase transition in the early Universe. 

Despite our complete uncertainty regarding this new sector, it is of 

interest to determine whether or not an inflationary model can be 
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derived using only a single new field and no relative fine tunings among 

the couplings. In a minimal N=l supergravity theory, it is clear that 

this is not possible. Namely, one cannot write down a superpotential of 

the form 

f(e) = L&3(@) (4.1) 

where the couplings in g(+) are all O(1) and p2 is determined from the 

constraint coming from density perturbations. Such a model fails in 

that the high temperature correction to the scalar potential derived 

from eq. (4.1) has no minimum near $ = 0. Hence there is no reason to 

expect that the initial conditions would single out e = 0 rather than 

any other point. 

The use of finite temperature corrections can remove the 

arbitrariness of- 0 initial by taking @initial = min(VT). Doing this 

however requires an additional assumption. It requires that at some 

early epoch thermal equilibrium was once established. Below M 
P’ 

this 

seems unlikely as self couplings are too small to compete with the 

expansion rate of the Universe. One must assume therefore, that at 

scales above M 
P’ new physics was responsible for the thermal 

distribution. Inflation will then follow if the thermal effects pick 

out e = 0 as the initial condition. Whether or not $=O is chosen has 

been the subject of recent debate [23]. It has been argued however that 

in models in which <e>=v-M 
P’ 

i.e. primordial inflation, proper initial 

conditions are obtained 1241. 
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One is left therefore, with three alternatives: 1) ignore the 

thermal constraint; 2) find a scenario which does not require it; or 

3) try to find a model which satisfies it. The first choice requires 

choosing by hand initial conditions and one can write a successful model 

which is very simple and satisfies all the zero temperature constraints, 

as was discussed in Section II. To alleviate the arbitrariness in the 

inflationary scenario, we prefer the second two alternatives. 

There has been one attempt to find a scenario which bypasses the 

thermal constraint. This is known as chaotic inflation [25]. In 

chaotic inflation, one utilizes the fact that at very high 

“temperatures”, there is a good probability that $ will be very far from 

$ = 0. Indeed @ 2 Mp is possible so long as V(o) < Mi: As e begins to 

settle to its local minimum !given for example by a ho4 potential) 

inflation may occur. If we take the example of a he4 potential, we need 

A - 1O'!2 in order not to overproduce density perturbations C26,271. 

Inflation occurs however only when the Lagrangian is dominated by the 

potential energy rather than the kinetic terms. Therefore 

‘a ‘* + (a,$)* 5 v -< M4 
P 

(4.2) 

If we assume for some reason that e begins at rest (already a bad 

assumption at the Planck scale) 6 = 0. If we then take 0 to be smooth 

over a horizon scale AL - H-’ - M-’ then 
P’ 

i1/2$2 

A$< M <M 
P P 

(4.3) 
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which requires $initial as large as lo3 Mp with A$ < M 
P’ 

In short one 

would expect this model to be dominated by kinetic energy terms rather 

than the potential. If one assumes however that the field was smooth 

over a scale AL - 103HLl -103M-’ one has do < 
P 

103A1’*02/M p < 103M or P 

einitial - *e - 1 03M p C271; Smoothness over many horizon scales 

(103H’l) seems equivalent in choosing by hand the initial conditions of 

our first choice. 

In this paper we have taken the route of our third choice, i.e. to 

satisfy the thermal constraint. In the context of minimal supergravity, 

one can either add additional fields and/or make severe fine tunings in 

the couplings to satisfy all constraints. This has apparently been 

shown to be possible. We preferred however to rest with a single field 

and no relative fine tunings by exploring the effects of a theory with 

non-minimal kinetic terms. We find that indeed this approach is 

possible. 

Finally we note that there have been other attempts at inflation 

utilizing nonrmi nimal supergravity models based on a SU(N, 1) symmetry 

L281. In these models, the Kahler potential has the basic form 1291 

G = -3 ln(f(z,z*) r $1’@1/3) + ln(F12 (4.4) 

where z is the Polonyi field responsible for SUSY breaking and ei 

(1 . ..N) contain the inflaton and matter fields. These theories 

necessarily involve the mixing of the z field with the matter fields and 

cannot be discussed in terms of single field inflation. Care again must 

be taken to solve the thermal constraint. In the so-called maximally 
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symmetric models C301, although the scalar potential is symmetric about 

@ = 0 the thermal potential contains a linear term so that $initial f 0. 

Simpler versions of this model however can be made to satisfy the 

thermal constraint with the choice C281 

F($) = ~‘(4 - $4/4) (4.5) 

In conclusion, we have shown that there exists a class of single 

field inflationary models which satisfy both the zero and finite 

temperature constraints. By utilizing non~minimal kinetic energy terms 

one can obtain the additional freedom to satisfy these constraints. In 

these models, the standard low energy N=l supergravity theory is left 

unaltered. 
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In this appendix we demonstrate that the field transformation 

carrying the “non physical inflaton” @ into a “physical inflator?’ 0 does 

not alter our results. 

The K%hler potential G of eq (3.21) implies a kinetic term in the 

Lagrangian 

Lfl = c~a,~aW* 

where 

G; = , +(~i=~)~~*+~(~*+~**)+~(c+~) (c$2$*++$*2) . 

If @ = 4R + ieI, then 

Gzd$d@* = G$b$;+d$f) 

= (~+@;+BO;+Y$; +YQR$;)(d$$+d$;) 

= d@E+d$f+ (terms of higher order) 

A.1 

A.2 

A.3 

where the terms of higher order have the form @id@; etc. It follow3 

therefore that to lowest order the new fields @R, @I are identical to ,j R 

and eI. Therefore we find for example for 



av + av a4FL + p- a$, - * 
aaR aoR 
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A.4 

and evaluated at Q = 0 this vanishes because aV/a$R and aV/&$, vanishes. 

Also 

a2v 

w,aa, 
A.5 

which also vanishes at the origin because 

a*v a$, av a2@I 
--I-l---- 1- 
a+2, aoR aeR a*2, 

A.6 

all vani ah. Similarly one sees that a%/aO~ > 0 because a’V/a$: > 0. 

By carrying out the field transformation in the vicinity of the 

minimum v of v one similarly finds that all constraints at v are 

satisfied. 
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Figure Caption 

Figure 1: The T=O scalar potential in the $-$I* (0,) direction for 

the parameters given by eq. (3.15). 
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